Adaptive plasticity of Xenopus glial cells in vitro and after CNS fiber tract lesions in vivo.

نویسندگان

  • D M Lang
  • C A Stuermer
چکیده

Xenopus oligodendrocytes and aspects of their differentiation were analyzed in vitro and in vivo using cell- and stage-specific antibodies. Undifferentiated oligodendrocytes were derived from optic nerves or spinal cords. They divided in vitro, were of elongated shape, were glial fibrillary acidic protein and O4 positive, transiently exhibited several antigens including HNK-1 and L1, and promoted axon growth as do Schwann cells. With forskolin they differentiated and, much like myelin-forming oligodendrocytes in the intact optic nerve and spinal cord, they expressed sets of advanced myelin markers. These advanced myelin markers disappeared from the regenerating optic nerve 4 weeks after lesion. The optic nerve instead was populated by cells with radial processes and somata in the center of the nerve; among them were cells and processes that were O4 positive and that are suspected to represent undifferentiated oligodendrocytes. Where processes of these cells reached to the retinal axons in the nerve's periphery, advanced myelin markers typical of differentiated oligodendrocytes reappeared 8 weeks after lesion. These glial changes did not occur in the absence of retinal axons. Thus, the apparent capability of Xenopus oligodendrocytes to adapt to the transient absence, reappearance, and regenerative state of the axons enables them to contribute to central nervous system fiber tract repair. This occurs in the lesioned optic nerve but not in the spinal cord, where no such glial changes were observed and where axons fail to regenerate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نقش سلول های گلیا در پاسخ سیناپسی پایه و شکل پذیری سیناپسی کوتاه مدت ناحیه CA1 هیپوکمپ

Background and purpose: Glial cells seem to play role in synaptic plasticity because they have the ability to release trophic factors and gliotransmitters and respond to neurotransmitters. They also play important role in synaptic space homeostasis. In this study, the role of hippocampal glial cells in baseline synaptic response and short term synaptic plasticity were investigated.  Material...

متن کامل

P167: Key Role of Inflammation in Central Nervous System Damage and Disease; TNFα, IL-1

Inflammation is portion of the body's immune response and it is basically a host protective response to tissue ischemia, injury, autoimmune responses or infectious agents. Although the information presented so far points to a detrimental role for inflammation in central nervous system (CNS) disease, it may also be useful. CNS demonstrates characteristic of inflammation, and in response to damag...

متن کامل

The protective role of glycyrrhizin on ethanol- damaged B92 glial cells in vitro

Background and Purpose: Glycyrrhizin is one of the most important pharmacological compounds of the Licorice plant. The purpose of this study was to investigate the protective effects of glycyrrhizin on the B92 glial cells after treatment with ethanol. Materials and Methods: B92 cells were obtained from the Pasteur institute cell bank of Iran, (1×106 cell/ml) were transferred to 96 plates and in...

متن کامل

P 155: The Roles of Microglia in Neurodegenerative Diseases

Microglia is a type of glial cell located throughout the central nervous system (CNS), which is sensitive to CNS injury and disease. Responsibility of microglia as the resident macrophage cells for injuries suggests that these cells have the potential to act as diagnostic markers of disease beginning or progression. Function of Microglia is strongly synchronized by the microenvironment of brain...

متن کامل

Administration of Leukemia Inhibitory Factor Increases Opalin Expression in the Cerebral Cortex of Male Balb/C Mice An In Vivo Study

Background: Leukemia inhibitory factor (LIF) is a neurortophic cytokine which plays an important role in the neural cell survival. Expression of LIF and its receptor, LIFR, in different brain regions has been demonstrated. Based on evidences LIF plays an important role in the modulation of neurogenesis and glial responses to injury. Up-regulation of LIF after central nervous system (CNS) damage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glia

دوره 18 2  شماره 

صفحات  -

تاریخ انتشار 1996